一、选手简介
1、选手介绍
- 团队名称:Sunday
- 队长介绍:我叫时亚东,帆软社区用户名也是时亚东,目前就职于杭州容创荣新信息咨询有限公司,我司目前从事教育培训行业,以标杆企业学习和数字化转型咨询服务为主,为正在寻求数智化转型的中小企业提供解决方案和人才培养。目前岗位角色是“数智化人才培养项目经理”,同时我也是一名商业数据分析师,对帆软公司下的FineBI和FineReport两款产品已有四年的使用经验了,分别获得FCP-FineBI认证和FCP-报表工程师认证。个人非常看好FineBI在企业数字化转型过程中“江湖地位”,目前很多大中型企业在数字化转型过程中都愿意与帆软合作,提供直击业务痛点,打破数据孤岛等企业数据治理问题的解决方案。同时个人非常愿意利用FineBI解决工作中的数据分析问题,积极向身边的同事和客户推荐FineBI,合理利用帆软社区提供的知识库和借鉴行业案例。
- 成员介绍:
- 孔国成,目前就职于杭州容创荣新信息咨询有限公司,当前岗位角色是“数智化人才培养项目经理”,同时负责杭州标杆企业学习项目策划与现场交付。拥有丰富的数智化人才培养项目的管理经验,在与客户交流过程中能够迅速把握住业务痛点、人才能力缺失点。能够顺应社会热点,迅速设计数智化人才课程,比如AIGC方面的人工智能训练师课程等。
- 王文豪,目前就职于杭州容创荣新信息咨询有限公司,当前岗位角色是“标杆企业学习项目交付经理”,对数据分析拥有深厚的兴趣,具有敏捷的数据思维和数据感知力。目前在从事某国企“数据驱动业务”数智化转型项目的管理工作,接触到大量的实战案例,接触过FineBI、QuickBI和PowerBI等数据分析工具。
- 团队组成:
我们三人来自同一个公司,作为数据分析师的我刚进入公司便以企业数据分析咨询师的身份帮助大家认识数据分析,学习数据分析思维和方法。由于之前自己参加过三次帆软团队举办的FineBI数据分析大赛,获得了一些成绩,便向同事们介绍了这个比赛和规则。为了更好的提升团队的数据分析能力,借助本次举办的【2023年第四届FineBI数据分析大赛】机会,带领我们团队积极参与到这次比赛中,希望能够获取优异的成绩,和来自各行各业的数据分析高手们共同交流学习。
2、参赛初衷
- 培养团队的数据分析能力,增进团队合作默契。
- 目前在做课程运营推广时遇到一些瓶颈,在解决问题的同时掌握FineBI的数据分析功能。
- 能够与各行各业的数据分析高手们共同交流学习,获取一些案例和经验。
二、作品介绍
1、业务背景/需求痛点
- 业务背景:
- 今年我们公司希望能够通过小红书、抖音、今日头条或知乎上对我们的学习项目产品以及主营业务进行介绍,但是我们团队是初次运营此类平台,所以领导希望我们多收集一些平台上关于“数据分析”相关的笔记信息和博主信息,找到一些规律和方法,指导我们自己的推广内容运营,提高用户转化率。
- 需求痛点:
- 如何撰写推广内容,在平台上发布内容时需要注意哪些细节?
- 如何运营平台账号,平台上的博主画像是怎样的?
- 如何模仿头部的博主,布局公司的账号,抓住客户需求,制作新颖的内容。
2、数据来源
3、分析思路
4、数据处理
在数据处理环节我们创建了2个新的指标“笔记关注度”和“博主热度”,借助FineBI的数据清洗功能先获取点赞数、收藏数和评论数的最大值和最小值,然后利用极值进行归一化,最终通过给予不同指标的基础权重计算笔记关注度指标。
5、可视化报告
(1) 第一个Tab页:哪些笔记关注度高
小红书平台属于用户生成内容(UGC)的平台之一,主要内容类型分为2种,分别为视频和图文。
本次项目为探究关于“数据分析”主题下哪些笔记最受用户喜欢,收集了150篇小红书笔记,分别由来自26个地区的89名优秀博主发布,共有5种笔记类型,其中干货推荐83篇,课程推广29篇,经验分享21篇,技能教学13篇,效果演示4篇。
基于这些笔记的点赞数、收藏数和评论数,我们构建了一个新的指标,笔记关注度,计算公式为:笔记关注度=20×归一化后点赞数+30×归一化后收藏数+50×归一化后评论数。
1. 所收集的150篇笔记平均点赞数1511次,平均收藏数2135次,平均评论数136次,平均关联话题数6个。
2. 关联话题集中在“数据分析”、“数据分析有窍门”、“数据分析我在行”等。
3. 其中84.67%的笔记属于图文类,15.33%的笔记属于视频类。以干货推荐类的笔记占主体。
4. 广东地区此类笔记发布次数最多。
5. 关联话题在10个以下,笔记关注度相对较高。
6. 收集到的150篇笔记中笔记关注度在5分以上的笔记数仅有36篇,其余均为5分以下的关注度。
(2) 第二个Tab页:哪些博主热度高
为进一步探究关于“数据分析”主题下的小红书笔记内容运营的细节,我们采集了来自33个地区的212位小红书平台发布数据分析相关笔记的博主信息,进行小红书博主的画像分析。
其中男性博主人数略低与女性博主人数,92.45%的博主来自国内,仅7.55%的博主来自于国外。博主首页的标签关键词主要有“数据分析”、“知识”、“分享”、“Excel”、“学习”等。
为更好体现博主的受欢迎程度,我们结合粉丝人数和获赞与收藏数指标,新建了博主热度指标,计算公式为:博主热度=60×归一化后的粉丝人数+40×归一化后的获赞与收藏数。
1. 212位分享数据分析相关知识的博主发布的笔记内容获得大家的追捧,平均粉丝人数1902人,平均获赞与收藏数达6875次,平均博主热度为5.11。
2. 博主热度最高的IP属地在河北省,但是我们观察到广东省的博主人数是最多的。
3. 男性博主的平均博主热度为8.10,远大于女性博主的平均博主热度2.86。
4. 我们根据博主热度指标最终筛选出以下3位博主进行研究:“数据分析精选”、“Shawn数据分析”、“数据分析看Stone”。
(3) 第三个Tab页:头部博主如何运营小红书
基于上一环节我们聚焦到小红书博主热度最高的三位优秀博主“数据分析精选”、“Shawn数据分析”和“数据分析看Stone”,采集了每位博主近期50篇小红书笔记信息进行统计分析。
三位博主都在自己的主页设置了专栏,将自己的作品分类收藏在不同的专栏内,以便粉丝们学习查找。统计博主专栏笔记数发现数据分析精选的笔记数最高达到309篇,属于高产博主。但是开设的专栏数最少。
“Shawn数据分析”博主最近发布的作品在2022年11月份,已停更近一年了,非常可惜,但是他在平台的干货贡献广泛受到粉丝们的追捧和收藏,再次说明内容的价值才是“王道”。
1. 基于每位博主的近期作品点赞数、收藏数和评论数,新建笔记关注度指标,其中“
数据分析看Stone”的平均笔记关注度最高。我们发现其有篇笔记收到1792个评论,大家可以通过筛选控件找到这边笔记。
2. 可以通过筛选控件查询感兴趣的博主信息,三位博主的赛道有共同点都是在分享数据分析类的知识,但也存在差异。Stone注重数据分析面试经验分享,Shawn注重数据分析干货分享,数据分析精选则侧重数据分析技能提高。
3. 在运营小红书类平台账号的时候需要选择适合自己的赛道,分享的知识或内容是大家感兴趣的,抓住粉丝的需求。通过起合适的标题吸引,关联热度最高的关键词主题。
6、最终作品效果图
作品链接:https://bisolutions.fanruan.com/webroot/decision/link/BDGv
三、参赛总结
1、FineBI工具
- 在从事数据分析工作近三年了接触了不少数据分析工具,但始终对FineBI情有独钟,从FineBI 5.0版本到FineBI 6.0版本,一直是忠实的“番薯”,站在使用者的角度感觉交互感越来越好,尤其是对自助数据集的优化更是提高了平时的工作效率。本次借助FineBI 6.0第四次参加数据分析大赛,从数据加载到数据清洗,再到最后的可视化图表制作,一系列操作非常丝滑,祝愿FineBI在后期的优化过程中越来越好。
2、参赛总结
- 本次参赛最耗时的过程是对小红书平台数据的采集,每一篇笔记和每一位博主都进行点击查看,收集他们的重要字段信息,我们团队也是夜以继日地进行采集工作。
- 本次参赛主题一方面是对公司实际需求的解决和验证,另一方面也让我们更了解了小红书平台的运营规则,同时我们采用了Tab页控件,以主题方式分模块展现我们的数据故事。为后期提高小红书笔记的撰写能力和主题赛道的内容产出有了重要的指导作用。
- 同时也参观了社区内各行各业数据分析师的作业,得到了很多启发,也发现了差距,我们利用FineBI在数据分析的道路上越来越优秀,星光不负赶路人,再接再厉。
|